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The problem of collision detection is fundamental to interactive applications such
as computer animation and virtual environments. In these fields, prompt recognition
of possible impacts and the closest pair of points between two polytopes in collision
are important for computing real-time response. We present a simple exact collision
detection algorithm for convex polytopes. The algorithm finds quickly a separating
plane between two polytopes if they are non-colliding. The validity of this separating
plane is verified in constant time instead of linear time as in previous methods [13].
Besides, our algorithm continues to find another separating plane if the current one
1s not a valid separating plane until collision is detected. Our algorithm guarantees
to find a separating plane in a finite number of steps if there is no collision between
the two polytopes. In the case of collision, the algorithm reports the closest pair of
points between them since the contact points are useful for computing response. In
the case of non-collision, the separating plane found for one time frame is cached
as a witness for the next time frame. This use of time coherence further speeds up
the algorithm in dynamic applications. Both temporal and geometric coherences
are exploited to make this algorithm run in expected constant time empirically. In

practice, our algorithm is significantly faster than existing methods.
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Chapter 1

Introduction

Collision detection problems and their variants are of vital importance in many
fields, such as computer animation, physical simulation, computer simulated envi-
ronments, solid modeling and robot motion planning, especially with the emergent
fields of virtual reality [12, 17, 2, 9, 27, 28, 29, 50]. The problems concern the fact
that two impenetrable objects cannot share a common region. In computer anima-
tion, objects simulated in the environments change motions according to the contact
constraints and impact dynamics. It is critical to compute the response in time when
objects collide. In physical simulation, complex interactions of hundreds of parts in
the virtual prototyping system are simulated based on physics and geometry. It is
important to locate the intersection points when parts collide in order to provide
proper reaction. In robotics, the collision detection between robots and obstacles
is important for robot motion planning and collision avoidance. In solid modeling,
complex objects are usually formed from intersection of primitive objects such as
in CSG. It is important to identify the intersection area for efficient modeling. In
virtual reality, a physical environment is simulated such that humans can readily
visualize, explore and interact with the virtual objects in the environment. The
virtual world will seem more believable if objects can receive expectable natural
behaviour presented as feedback from the objects in the virtual environment such

as push, pull and grasp. The fundamental principle behind is that solid objects do



not penetrate one another when colliding, instead they should react according to

the law of physics.

In all these fields, prompt recognition of possible impacts is necessary for com-
puting responses as an effect of collision. However, the virtual environment usually
consists of hundreds or even thousands of simulated moving/static objects, with
each object modeled by hundreds of patches. So collision detection is widely rec-
ognized to be one of the major bottlenecks towards real time virtual environment
simulations [27]. We believe that successful derivation and implementation of fast
and efficient collision detection algorithms will significantly enhance the real-time

performance of the above applications.

Typically the above collision handling problem has two parts. The detection
algorithm and the response algorithm. The detection algorithm identifies whether
objects collide. The response algorithm determines appropriate action based on the
contact points and impact dynamics when there is a collision. In this thesis, we
will focus on the detection algorithm. For discussions of response algorithms, see
[12, 45, 46].

In general we can distinguish between three types of collision detection (see [39]) :
static collision detection, pseudo-dynamic collision detection and dynamic collision
detection. In static collision detection, the moving object is checked for intersec-
tion with the environment at one particular position and orientation. In pseudo-
dynamic collision detection, the moving object is checked for intersection with the
environment at any of a set of discrete position/orientation pairs along the path
corresponding to the object’s motion. In dynamic collision detection, the volume
swept out by the moving object is checked for intersection with the environment.
The problem of static collision detection is studied extensively in computational
geometry [40, 41, 42, 14, 43, 22]. There are a number of algorithms with good
asymptotic bounds, however they are not practical when implemented in a realistic
environment. Solving the pseudo-dynamic collision detection has an advantage that
temporal coherence can be exploited to achieve a better expected running time as

in [1, 12]. In this thesis, we focus on the use of temporal coherence to solve the



problem of pseudo-dynamic collision detection. The problem of dynamic collision

detection is addressed in [16, 44].

Objects in a simulated environment are usually modeled by some analytic para-
metric surfaces, such as NURBS surfaces. Because the solution to the problem of
polygonal collision detection is extremely efficient and the objects must usually be
represented in polygonal form before being displayed, a hybrid approach is employed
as in [46]. In this approach, the boundary surface is first tessellated and the object
is represented by boundary representations, then an intersection point of the polyg-
onal surfaces is used as an initial point for numerical methods. For a discussion of

intersection between parametric surfaces, refer to [34, 35, 37, 36].

The problem of collision detection is usually coupled with determining the min-
imum Euclidean distance or the closest pair of points/features between two objects
[48, 49, 15, 47, 43], since the closest pair of points provides necessary information for
the spatial position of the two objects in order to determine whether they collide or
not. However, the problem of finding the closest pair of points between two objects
is a harder problem than the collision detection problem itself in the sense that we
can solve the collision detection problem without any knowledge about the closest
pair of points between them. As a result, it is expected that more computation
is needed if one wants to find the closest pair of points between the two objects.
However, existing methods on collision detection attempt to find the closest pair of

points to solve the above harder problem when their bounding boxes overlap.

In this thesis, we present a new and efficient approach to solving the collision
detection problem without computing the closest pair of points between the two
objects involved. Although the information about the closest pair of points is im-
portant in computing the response when objects collide, such information is usually
not useful when there is no collision. Hence we propose in this thesis to calculate

the closest pair of points only when collision occurs.

We propose an efficient algorithm, called the separating vector algorithm, to
handle collision detection of polytopes. This algorithm is a major improvement

on existing ones in terms of running time, implementation simplicity, and memory



requirement. Our algorithm extends the idea in [13], which caches a separating plane
H between two non-colliding polytopes after the closest pair of points p and q of
polytopes P and () are computed. This cached plane H is a plane passing through
the point (p +q)/2 with normal q — p. In the next time frame, the algorithm uses
linear time to check if all vertices of P lie in one side of H and all vertices of Q lie
in the opposite side of H. If the above condition is satisfied then P and Q do not
collide and there is no need to find the closest pair of points. Otherwise the closest

pair of points are computed and another plane H is found.

Our algorithm finds a separating plane with a different strategy that does not
rely on computing the closest pair of points. Besides, our algorithm verifies the
validity of the cached separating plane in expected constant time instead of linear
time as in [13]. Moreover, instead of giving up and spending considerable amount
of time on computing the closest pair of points, our algorithm will continue to find
another separating plane by using a simple iterative method if the current one is
not a valid separating plane. If there is no collision, our algorithm will find a proper
separating plane quickly in a finite number of steps. Otherwise it will report collision
after testing some simple conditions. In the case of collision, information from the

preceding time frame is used to compute the closest pair of points.

Since the closest pair of points may be useful when there is a collision, we have
improved and integrated Gilbert’s algorithm [18] into our separating vector algo-
rithm so that the closest pair of points can be found quickly. In the typical virtual
reality environments, the running time of the improved algorithm is nearly indepen-
dent of polytope’s size when temporal coherence is exploited. Without making use
of temporal coherence, we also improve the running time of Gilbert’s algorithm by
modifying the way supporting vertices are searched from time complexity O(n) to
O(logn), where n is the number of vertices. As a consequence, we greatly improved

the running time of the Gilbert’s algorithm for collision detection of two polytopes.

Our algorithm makes use of temporal coherence by caching a separating plane
for successive time frames. A special property of our algorithm is that the closest

pair of points/features is computed only when there is a collision, as opposed to [10]



in which the closest pair of features between two polytopes are computed for every
time frame. Besides, our algorithm considers vertices of polyhedra only, rather than
all boundary features (vertices, edges, and faces) as in [10], so it is more efficient and
simpler to implement. Temporal and geometric coherences are exploited to make
the algorithm run in expected constant time empirically. We have shown that the
performance of our algorithm meets requirements for real-time interactive collision

detection of polytopes in virtual environments.

1.1 Previous Work

The problem of collision detection has been extensively studied in many fields,
such as robotics and computational geometry. Most of the research makes use of
axis-aligned bounding boxes or a hierarchy of them as the first step to quickly
eliminate most non-interfering objects, assuming that no self-intersection occurs
as in deformable objects. For n bounding boxes, the O(n?) pairwise checks have
been reduced to O(nlogn + e), where e is the number of intersections, using the
octree [9] and sorting [30]. In the octree methods, the space is divided into 8
sub-spaces with each one recursively subdivided further. All the faces that are in
one sub-space do not intersect with faces in the other 7 sub-spaces. Based on this
observation, the collision of each face is searched only in the sub-trees where possibly
intersecting faces exist. Recently, the bound O(n+e) is achieved in [1] by projecting
the endpoints of three-dimensional bounding boxes onto the z, y, z axes and sorting
them at each time instant. Due to geometrical coherence, the expected sorting time

is linear. Two bounding boxes overlap if and only if their intervals overlap in all of

the three dimensions.

Spatial subdivision or spatial partitioning [3] is another method to facilitate
the bounding box tests. The space is divided into cells of equal volume, and each
object is assigned to one or more cells. Collision is checked between all object pairs
belonging to a particular cell. Yet another method makes use a scheduling scheme

such that objects that are close to each other are checked more frequently at each



time instant [4, 5]. The idea is to calculate the shortest possible time before the
next possible collision for every pair, assuming that velocity is bounded. Another
approach using time bound is described in [16]. This is a progressive refinement
approach which is based on two forms of approximate geometry, a sphere-tree and a
four-dimensional structure called a space-time bound. The algorithm is interruptible

and can trade quality for speed when necessary.

The next step for the collision detection algorithm is to locate possible inter-
section of faces between objects whose bounding boxes overlap. As each object
can be made up of hundreds of triangular patches, efficient algorithms have to be
utilized. In [7], faces of objects that intersect the overlapping region of bounding
boxes are determined first using clipping. Then a face octree is built for the above
faces to check for possible intersection. This method has the advantage that it can
deal with concave and deformable objects. In [8], the rectangular box bounding an
object is subdivided into voxels, ordered in a 3D array, in its modeling reference
system. Each element of the array is a pointer to a list of facets that intersect the
voxel. Intersection is done by transformation of the voxel from one reference frame

to another.

In [11], a data structure, called a “BRep-Index”, is used for quick spatial ac-
cess of polyhedra in order to localize contact regions between two objects. In [18],
an expected linear time algorithm which computes the minimum distance and a
separating plane of two objects is proposed. In [13], separating planes for pairs of
objects are found by the above expected linear time algorithm and cached [12] to
yield a reply of non-collision most of the time using temporal coherence. However,
it also takes linear time in the following time frame to test the validity of the cached
separating plane. In [19], a sub-quadratic running time algorithm to detect collision

between polytopes is proposed.

When the motion is restricted to be translational only, the best theoretical run-
ning time so far for detecting collision between two polytopes is O(log pxlog ¢), where
p and ¢ are the number of faces of two polytopes respectively, using the hierarchical

representation of convex polyhedra [14]. The algorithm needs O(p + ¢) preprocess-




ing time to build the hierarchical structure. Then the closest pair of points is found

incrementally starting from the lowest hierarchical level to the highest one.

In [31], back-face culling is used to remove roughly half of the faces of objects
from being checked for interference. The basic idea is that for any two objects, the
polygon faces of one object facing backwards with respect to the relative direction
of motion cannot collide with the other object. In [20], the ideas of [1] and [10]
are extended to deal with concave polytopes. In [32, 33] the idea of z-buffer visible
surface algorithm is used to perform interference detection through rasterization.
Other methods to detect collision usually decompose the object into a hierarchical
structure, so that concave polyhedra can be handled. Those methods include octree
[2], BSP tree [3], C-Tree [38], sphere trees [23], strip trees and boxtrees [25], R-trees
[24] and OBB-Tree (Oriented Bounding Box Tree)[26]. Among them, OBB-Tree
is more efficient than other hierarchical trees because of its tightest bounding box.
In OBB-Tree, the rectangular bounding box is not axis-aligned. Instead it makes
use of statistical techniques to analysis the distribution of vertices in space. In this
way it yeilds a tight fitting oriented bounding box. A top-down approach is used
to build the bounding boxes tree by recursively subdividing a group of polygons
until all leaf nodes are indivisible. The overall time to build the tree is O(nlogn).
Besides, a Separating Axis Theorem is described in [26] that can determine if two
OBBs overlap in less than 200 operations. The theorem states that if two OBBs
are not in contact, then there exists a separating axis which is the cross product
of two distinct vectors taken from the six box axes. Although OBB-Tree is already
quite efficient for general polyhedral, for convex polyhedra geometric coherence can

be exploited to devise faster algorithm without decomposing the polyhedra.

In the implemention of our collision detection library, we use the sweep and
prune technique with axis-aligned bounding boxes instead of OBB. It is because
our library is modified from I_COLLIDE library, an implementation of the closest
features tracking algorithm in [1], which uses axis-aligned bounding boxes. Besides,
the complexity of testing the intersection of n OBBs is O(nlogn), while the sweep

and prune technique for axis-aligned bounding boxes requires only expected O(n)




time.

The method in [10] maintains a closest pair of features (vertices, edges, or faces)
for each pair of polytopes and calculates the Euclidean distance between them. The
method is based on the fact that two features F; and Fj are the closest pair of
features if and only if F lies in the Voronoi region of F; and F} lies in the Voronoi
region of F. This method takes advantage of geometric coherence and rums in
expected constant time if the polytopes do not move swiftly. Since the algorithm
needs to compute and store the Voronoi region for each vertex, edge and face on
the boundary, and to handle different cases when walking around on the boundary
in order to find the closest pair of features, the implementation is complicated.
Moreover, in some applications the pair of closest features are not of great interest to
the program when polytopes do not collide. So sometimes it is not worth continuing
to compute the closest pair of features once it is known that a separating plane

exists between the two polytopes.

As for curved objects, a general algorithm is described in [34] for time dependent
parametric surfaces. The algorithm uses a subdivision technique in the resulting
space. A similar method using interval arithmetic and subdivision is presented in
[35]. However, for commonly used spline patches, computing and representing the
implicit representations are computationally expensive [36]. In [37] implicit functions
are used to represent shapes and the property of the “inside-outside” functions is
employed for collision detection. In [6] homogeneous bounding boxes are used as

tools in intersection algorithms of rational Bézier curves and surfaces.

In summary, existing algorithms are not as efficient, simple, and practical as
ours for collision detection of polytopes in virtual environments. Moreover, existing
algorithms tend to solve the harder problem of finding the closest pair of points
between two polytopes but not exactly the problem of determining if two polytopes

collide.




1.2 Main Contributions

The main contributions of this thesis are :

1. A new simple and efficient algorithm, called separating vector algorithm, for

collision detection of polytopes in virtual environments.

2. An improved Gilbert’s algorithm to compute the closest pair of points more

robustly and efficiently by exploiting geometric and temporal coherences.

3. A new O(logn) algorithm to find a supporting vertex of a polytope with O(n)

preprocessing where n is the total number of vertices in polytopes.

4. A technique that makes use of the hierarchical representation of polytopes to

find a supporting vertex by local search.

5. An implementation of a collision detection library, called Q_.COLLIDE (Quick

collision detection library), based on our algorithm.

6. Experiments show that our collision detection library Q_COLLIDE is more
efficient than the currently fastest collision detection library I.COLLIDE in all
situations, especially when the rotational/translational velocity of polytopes in
the environment is high or the complexity of polytopes is high. In particular,
Q_COLLIDE is at least one order of magnitude faster then I. COLLIDE when

the number of vertices of each polytope exceeds 200.

1.3 Overview of the Thesis

This thesis is organized in a way that each chapter is based on the foundation
provided by the preceding chapters. We begin in Chapter 2 to describe basic con-
cepts used in the development of the algorithms presented later. The computational
geometry and modeling concepts we describe are convex polyhedra, hyperplanes,

Minkowski sum and boundary representation.




Chapter 3 presents the main idea of our separating vector algorithm, which is
a simple and practical algorithm for collision detection between two polytopes. In
this chapter, we describe how the algorithm can be used to detect non-interference
polytopes efficiently - by exploiting geometric and temporal coherences to find a
separating plane between two polytopes in expected constant time. The algorithm
is particularly suitable for dynamic collision detection. Experiments show that it
can eliminate about 99% of non-interference polytopes with at most four iterations
of the algorithm, nearly independent of polytopes’ shape and complexity, before a

usually more time-consuming exact collision detection algorithm must be invoked.

Chapter 4 extends the separating vector algorithm to detect collision between
two polytopes by enforcing a termination condition so that the algorithm can detect
if a collision occurs. Then we prove that the algorithm is guaranteed to find a
separating plane if it exists. The later parts of this chapter deal with the complexity

of the algorithm and its possible improvements.

Chapter 5 describes how to extend the separating vector algorithm so that the
closest pair of points is also reported when there is a collision, which is useful in
computing responses when collision. We first review the idea of Gilbert’s algorithm
and Johnson’s algorithm [51]. Then we describe how to improve Gilbert’s algorithm
so that it is more robust and supporting vertices can be found in O(logn) time
instead of O(n) time. Afterwards, we describe how to use local search to further
improve the complexity of Gilbert’s algorithm when both geometric and temporal
coherences are exploited. Finally, we describe how to integrate our separating vec-
tor algorithm with the improved Gilbert’s algorithm seamlessly so that the whole

algorithm can run in expected constant time empirically.

In Chapter 6, we will discuss the implementation details of our separating vector
algorithm and the improved Gilbert’s algorithm. We implemented our algorithm
as a collision detection library, called Q_.COLLIDE. Experiments have been carried
out to verify the nice properties of our algorithm. To test the efficiency and effec-
tiveness of our algorithm, we compare it with I.COLLIDE - an implementation of

the closest feature tracking algorithm, which is the fastest collision detection library

10




for polytopes so far [1]. Our results show that Q_.COLLIDE is more efficient in
all cases, especially when the rotational /translational velocity of polytopes in the

environment is high or the complexity of polytopes is high.

The thesis is concluded in Chapter 7.
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Chapter 2

Background

In this chapter, we will describe some basic concepts used in the development
of our algorithms. We consider rigid polyhedral objects with bounding surfaces
described by polygonal meshes. This representation is commonly used in rendering
simulated objects in virtual environments. Some of the material presented here can

be found in [36, 21].

2.1 Convex Polyhedra

An object is represented by a compact set P, C E™. In E™ a set P, is convex
if for any two points in P,, A and B, the line segment AB is entirely contained in
P.. A point p is affinely dependent on a set of points P = {py,p2,...,Pr} in E™ if
there exist real numbers Ay, As, ..., A, such that p = A;p1 + Aop2 + - - - + A pr and
M+ Xy +---+ X =1. If in addition, the constraint A\; > 0 holdsfor¢=1,2,...,r,

then p is convexly dependent on P, i.e. p is inside the convex hull of P.

We define the affine hull and convex hull of a set of points P C E™ as :
aff(P) = Z)\ipi, where Z/\i =1,pi€P, ,€R (2.1)

conv(P) = Y A\pi, where > N=1 A>0,p€P, eR (22

12




A set of points is affinely independent if no point in the set is affinely dependent on
the other members of the set. The convex hull of a set of finite points is called a

convex polyhedron, or simply a polytope.

2.2 Hyperplanes

A hyperplane H is an affine subspace of E™ of dimension n — 1. It is defined by
{p € E* | p-S = 8} for some n-vector S, where x -y is the inner product of vectors

x and y. The two half-closed spaces determined by a hyperplane H are defined as :

H*={peFE"|p-S>f} and H- ={p€ E"|p-S < 5} (2.3)

A hyperplane H is a supporting hyperplane of a convex set P if i) PN H # 0

and (ii) P is contained in one of the closed half-spaces determined by H.

The supporting function Hp : R* +— R of P is defined by
Hp(S) =max{p-S|pe P}, SeR" (2.4)

Since there may be more than one supporting point, we define the contact function

Cp(S) : E™ — P as one of the solution of the above equations :
Cp(S) =p’ such that p' € {p|p-S = Hp(S),p € P} (2.5)

Geometrically, Cp(S) is one of the points farthest in P in the direction S (see

Figure 2.1). We define it as the supporting point of P in the direction S. Note

Figure 2.1: Supporting vertex of P in the direction S.

13




that this point is not unique in general. It has the property that the hyperplane H
passing through it with normal S is a supporting hyperplane of P.

If P is a finite set of points {py, p2,--.,Pr} in E™, then the support and contact

functions for conv(P) are defined similarly :

Hcom,(p)(S) = max{pi -S i 1= 1,.. .,7"}-, SeE" (26)
Ceonv(P)(S) = p;, such that p; € {p; | Pi* S = Heonu(p)(S), 1 <i <1} (2.7)

We define Ceony(py(S) as a supporting vertez of P in the direction S. Again Conuv(p)(S)

is not unique but it doesn’t affect our algorithm to be developed later.

With the above definition in mind, we can now state the necessary and sufficient
condition for there to be a collision between two polytopes P and Q. If there exists
a hyperplane H such that P and @ belong to opposite half-spaces of H,i.e. P C HT
and @ C H~ or vice versa, then P and @ are said to be separated. If in addition P
and @ do not both intersect H, then P and @ are properly separated. Otherwise P
and @ may touch each other without overlapping. It is shown in [21] that if P and
@ are convex sets, then the necessary and sufficient condition for the existence of a
hyperplane separating P and @) properly is that they have no common points, i.e.
the minimum distance between P and @) is positive. In other words, a hyperplane
exists that properly separates P and @) is the necessary and sufficient condition that

P and @ do not collide.

2.3 Minkowski Sum

The Minkowski sum Z of two polytopes @ and P is defined as
Z=Q+P={q+p|la€qQ,pe P} (2.8)

It is well known that the Minkowski sum of two convex polytopes is also convex
polytope. From the definition, if P has n vertices and ¢ has m vertices, then Z has

at most O(nm) vertices. An example of Minkowski sum is shown in Figure 2.2.

14
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P Q P+Q

Figure 2.2: An example of Minkowski sum.

If we define —P = {—p |p € P}, then theset M =Q—-P={q-p|qeQ,p€
P} is the Minkowski sum of @ and —P. The set M contains the origin if and only
if P and @ collide, since

P and @ collide < P and @ have a common point
< p=qforsomep € Pand q€ Q
& q-—-p=0forsomepée Pand q€Q
& 0eM

Hence the problem of collision detection between P and @ is reduced to the
problem of determining whether the origin is contained in M. Besides, the problem
of finding the closest pair of points between P and @ is reduced to the problem of
finding the closest point of M to the origin. Later we will show how to compute the

closest pair of points using this idea.
Although the Minkowski sum M = @ —P needs O(nm) time forming, the support
and contact functions of M can be computed in O(n + m) time [18], since
Hy(S) = Ho(S) + Ha(~S) (2.9)
Cu(S) = Co(S) — Cp(-S) (2.10)
This reduces greatly the effort of computing the supporting and contact functions

of the Minkowski sum of two sets. An example of the use of Minkowski sum to solve

the collision detection problem can be found in [18].
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2.4 Boundary Representation

A polyhedral object can be represented by boundary representation unambigu-
ously by describing its surface and its topological orientation in such that we have
the complete information about the interior and exterior of an object. This descrip-
tions has two parts, a topological description of the connectivity and orientation of
vertices, edges and faces, and a geometric description of coordinates needed to de-
scribe vertices, edges and faces. The topological description specifies the incidences
and adjacencies of vertices, edges and faces. For example, in boundary representa-
tion a vertex structure has a field that specifies the edges incident to the vertices
and the faces incident to the vertices, both in clockwise order when viewing from

outside the solid.

In this thesis, polytopes are represented by boundary representation but the
topological and geometric description of edges and faces are removed, as this infor-
mation is not used in our algorithm. The removal of edges and faces topological
and geometric information greatly reduces the coding and memory requirement of
our algorithm. In our algorithm, the topological description that specifies a vertex

v are the vertices adjacent to v.

2.5 Hierarchical Representation

Figure 2.3: A hierarchical representation of a polygon.

A hierarchical representation of a polytope P [14] with vertex set V(P) is defined
as a sequence of polytopes hier(P) = {Py,..., Py} such that
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(i) P, = P and P, is a simplex;

(i) P41 C P, for 1 <i < h;

(iii) V(Piy1) C V(R,), for 1 <4 < h; and

(iv) the vertices in V(P;) — V(P;y,), which is a set difference, form an independent

setin P, for 1 < < h.

Let h and 37, |V(P;)| be the height and size of hier(P) respectively (|V(P)| =
total number of vertices of P). It is proved in [14] that the height of the hierarchical
representation, h, is O(logn), assuming the degrees of all vertices are bounded.
Moreover, it takes O(n) time and space to build a hierarchical representation of

polytope.

This representation has been used to derive the O((logn)?) algorithm in [43] for
computing the closest pair of points between two polytopes (n is the total num-
ber of vertices). An example of hierarchical representation in 2D case is shown in

Figure 2.3. Note that the hierarchical representation of P is not unique.
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Chapter 3

Separating Vector Algorithm

In this chapter we present a simple and efficient algorithm to quickly elimi-
nate non-interference polytopes in a virtual environment. This method is especially
suitable for repetitive collision detection when the objects do not move swiftly so
temporal coherence can be exploited in the algorithm. When objects move very fast,
the algorithm will take slightly longer time. The basic idea is to detect collision be-
tween polytopes using the fact that two polytopes are separated if and only if there
exists a plane such that they belong to the opposite half-spaces of this plane [21].
In each iteration, the algorithm finds a candidate plane and uses constant time to
verify whether this plane is a separating plane. If it is a separating plane then the
polytopes do not collide, and this plane is cached to be used as the initial plane in
the search for a separating plane in the next time frame; otherwise the algorithm

continues to search for a separating plane.

Our algorithm is efficient and simple to implement. We will give a thorough
discussion on how the algorithm utilizes caching, preprocessing and local searching
so to run in expected constant time empirically. Some properties of the separating
vector algorithm will be proved at the end of this chapter. An important property
is that the plane found by the separating vector algorithm in each iteration is guar-
anteed to be closer than the plane in the previous iteration to any fixed separating

plane, if it exists.
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In the next chapter we will extend this algorithm to an exact collision detection
algorithm by adding a termination condition. In such a way, if the algorithm has

determined that a separating plane cannot possibly exist, it reports collision.

3.1 Collision Detection in Large-Scale Virtual En-

vironments

Our algorithm is an exact collision detection algorithm between convex poly-
topes. It can be used as a standalone algorithm for collision detection between
polytopes in virtual environments. However, in a large scale virtual environment
it is more efficient to combine our algorithm with a bounding box algorithm in or-
der to reduce pairwise collision tests. With some preprocessing, our algorithm can
integrate nicely with a bounding box algorithm to detect collision efficiently. We
propose to handle collision detection of convex polytopes in a large-scale virtual

environment in four steps :

1. Use spatial partitioning to eliminate non-interference objects that belong to

different regions.

2. Within each region, use the sweep and prune technique [1] to quickly identify

object pairs whose rectangular bounding boxes overlap.

3. Use the separating vector algorithm to detect collision between polytopes

whose bounding boxes overlap.

4. Use the improved Gilbert’s algorithm when collision occurs to compute the

closest pair of points in the immediately preceding non-collision time frame.

Later, we will describe how to use the results of each step to initialize the com-
putation of the next step so that collision detection can be done efficiently. The
details of our separating vector algorithm are given below. The improved Gilbert’s

algorithm will be presented in Chapter 5.
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3.2 The Algorithm

(1) (ii)

Figure 3.1: The idea of searching for a separating vector.

In this section we present the main idea of our algorithm. Recall that if V(P)
denotes the set of vertices of polytope P, a supporting vertex of P in the direction
S is given by p € V(P) where S-p = max{S-p’ | p’ € V(P)}. In fact, for a
supporting vertex p of P, we have S-p = max{S-p’ | p’ € P} since p is a convex

polyhedron.

Lemma 1: For a vector S, let p be a supporting vertex of polytope P in the direction
S and q be a supporting vertex of polytope @ in the direction —S. IfS-(q—p) > 0,
then P and @ do not intersect.

Proof: Since S-(q—p) > 0, we have S-q > S-p, which implies S-q > S-(p+4q)/2 >
S - p. By definition, S-p > S-p’ for any p’ € Pand S-q' > S-q for any q' € Q.
SoS-q >S-(p+4q)/2>S-p'. Hence the plane containing the point (p + q)/2
with normal vector being S separates properly P and . O

To explain the idea of our algorithm, a 2D version is first presented. Figure 3.1
shows two non-overlapping convex polygons P and Q. Note that Lemma 1 also holds

for the 2D case with the term “polytope” being replaced by “convex polygon”.

Briefly, the algorithm works as follows. Given two convex polygons P and @,

initially a unit vector S is chosen and a supporting vertex po of P in the direction
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Figure 3.2: Searching for a separating vector in the case of circles.

So is found. Similarly, a supporting vertex qo of @ in the direction —Sq is found.
Then the following condition is tested. By Lemma 1, with ¢ = 0, P and @ do not
collide if

S;i-(ai —pi) 2 0. (3.1)

Any vector S; satisfying the above condition is called a separating vector of P and
@, or just a separating vector since P and @ are often clear from the context. We
also call the vertex p; or q; satisfying the above condition a separating vertex of P
or @ respectively. Note that we consider the case where Sg - (qo — po) = 0 to be
non-collision, although in this case P and ) may touch each other. A separating
vector w of P and @ has the property that w-(q' —p’) > 0 for any p’ € P and any
q € Q.

In general, if the above test fails for S;, P and @ may still not collide. In this

case we find a new direction S;yy from S;, p; and q; by
Si+1 = Si - 2(1‘; . Si)rj, 1= 0, 1, ey (32)
where r; = (q; — pi)/||(ai — pi)|| (see Figure 3.3). Note that Si;1,S;, and r; lie
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Figure 3.3: Choosing the next searching direction Si ;.

on the same plane, and the angle between S;;; and S; is bisected by the vector

((gi — pi) x S;) x (q; — pi) perpendicular to r;.

This choice of Sj;1 from S; is based on the following observation. Consider
two non-intersecting circular disks P and @ in the plane (see Figure 3.2). If Sg is
not a separating vector, then the vector S; computed by formula (3.2) is always a
separating vector of the two circles. This is because the line segment pgqo intersects
P at py, which must be the supporting vertex of P in the direction S; due to the
special geometric property of circles. Similarly the line segment poqp intersects @
at q; which is also the supporting vertex of @ in the direction —S;. Now the line
segment pyq; does not intersect any other points of P and Q. Hence a line (or a
plane in 3D case) passing through (p1 +q1)/2 with normal S, separates properly P
and @. This argument is also true of two non-intersecting spheres, by considering the
cross-sections of two spheres with the plane determined by Sg and the centers of the
spheres. So in the general case of polytopes we choose Siyy by formula (3.2) in the
hope that S;i;; thus chosen converges quickly to some separating vector, provided

that P and @ do not collide.

If condition (3.1) does not hold and collision conditions (to be given later) are not
satisfied, the above procedure is repeated. The first Sy that satisfies condition (3.1)

is a separating vector of P and @, and k is the number of iterations performed by
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the algorithm.

This algorithm works exactly the same way in 3D case. It is proved in the next
section that if the two polytopes do not collide and the condition (3.1) does not
hold, 5; will get closer and closer to any fixed separating vector by each iteration.
Because of convexity, local search (to be explained in next section) is sufficient
to locate the supporting vertices. In the following sections, we will explain how
local searching, caching, preprocessing can help the separating vector searching step

achieve expected constant running time empirically.

In practice, this algorithm, without using exact collision testing, is useful to
eliminate non-interference polytopes. If after a prescribed number of iterations the
algorithm cannot find a separating plane, then an exact collision detection algorithm
can be used. Experiment shows that about 99% of non-interference polytopes are
identified as such within 4 iterations. Conditions for reporting collision when the

two polytopes collide will be discussed in the next chapter.

3.3 Searching for Supporting Vertices

We use the searching algorithm outlined in [1] to find supporting vertices p; on
P and q; on @), with respect to S; and —S;, respectively. In the search the current
vertex p on P is compared to its neighboring vertices to see if S; - p is the largest.
If this is the case, the current vertex is a supporting vertex; otherwise this vertex is
replaced by a neighboring vertex p’ with the largest S;-p’. This process is repeated
until a supporting vertex is found. Notice that the supporting vertex may not be
unique but this does not affect our algorithm. Moreover, the search is performed
locally on the surface of the polytopes. Because of convexity, this search can always
find a supporting vertex in a finite number of steps. If we assume that polytopes
do not move very fast between successive time frames (which is usually the case
in a virtual environment), then the separating vertex found for the preceding time
frame is usually close to a separating vertex in the current time frame. So if we use

the separating vertex of the preceding time frame as an initial point of search, then
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the required supporting vertices can be found quickly. Strictly speaking, the time
complexity to locating a supporting vertex using the above strategy depends on how
much the polytopes rotate/translate between successively time frame. In practice,
we observe that the running time is nearly constant as polytopes usually do not
move swiftly in a virtual environment, which has been verified by experiments. A

supporting vertex q on ) can be found similarly.

To speed up the searching process, we can use a timestamp associated with
each vertex to remember which vertices have already been visited. There is also a
global counter which increments by one every time the local search is performed.
When searching for the new supporting vertices, a vertex is ignored if its timestamp
matches the current global counter. Otherwise the dot product is evaluated and its
timestamp is set equal to the current global counter. On average, about one third

of computation in the search for supporting vertices is saved by using this approach.

Another advantage of using local search is that, in implementation, there is no
need to transform each vertex of polytope P or Q from its defining coordinate system
to the world coordinate system and then take the dot product with S; in order to
find a supporting vertex. Instead, a more efficient way is to transform vector S; to
the defining coordinate system of the polytope by the inverse of the rotation matrix
of the polytope, and the search is performed in the defining coordinate system. After
a supporting vertex is found, it is transformed to the world coordinate system. Thus
only two coordinate transformations are required in our method for locating each

supporting vertex.

3.4 Choosing the Initial Searching Direction

When the bounding boxes of two polytopes overlap for the first time, there
are three cases in general (see Figure 3.4). In each of these cases, there are many
ways to choose the initial searching direction Sg such as the normal vector of the

plane formed by some contact points between the two bounding boxes as shown in

Figure 3.4.
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Figure 3.4: Three cases to find the initial separating vector.

For simplicity and efficiency, the line segment connecting the two polytopes’
centers Sg = (Qc — Pc)/||9ec — Pe|| is chosen in our implementation, where p. and q.
are the centroids of P and Q respectively. A centroid can be approximated by the
average of all vertices of the polytope or by (3°; 4; x C;)/(5; As) where C; and A;
are the centroids and areas of face i respectively. This initial Sg is chosen because

the separating vector is likely to be close to this direction.

3.5 Preprocessing

When bounding boxes of polytopes overlap for the first time, an arbitrary vertex
can be used as an initial vertex for searching for supporting vertices of P and Q.
For better efficiency, we pre-compute supporting vertices in a number of pre-defined
directions and store them in a 2D table. In Figure 3.5, the center point in each
region is used to compute an approximate supporting vertex in that region. Then,
for any given direction Sp, a supporting vertex in the table with the direction close
to Sg is retrieved in constant time. This supporting vertex is used as the initial
vertex to search for a supporting vertex with respect to Sg. The larger is the size of
this 2D table, the better approximation of this initial point, and the more quickly
does this searching algorithm locate a supporting vertex. In our implementation, a

table of size 8 x 16 is used.
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Figure 3.5: Precomputing a supporting vertex in various directions.

3.6 Caching

In each time frame, if the separating vector algorithm detects that two polytopes
do not collide, the two supporting vertices and the separating vector found are
cached. This separating vector is used as the initial vector Sp in the next time
frame. If objects in the virtual environment do not move swiftly, this vector is
likely to be the separating vector in the next time frame or as an initial vector it
can help get a report on collision more quickly (collision report will be discussed
in next Chapter). When objects do move swiftly, the algorithms still works though
a bit more slowly. Similarly, the separating vertices found in the preceding time
frame are used as initial points to search for the new separating vertices in the next
time frame. In the subsequent iterations, the supporting vertex found in the last
iteration is used as an initial vertex to search for a new supporting vertex. Thus,
even though the previous iteration of separating vector searching algorithm may not
find a separating vertex, the effort is not wasted since the supporting vertex found
in the last iteration can help locate a separating vertex more quickly in subsequent
iterations. To summarize, this caching mechanism reduces the search computations

of the separating vector due to temporal and spatial coherences.
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3.7 Properties of the Separating Vector Algorithm

In this section, we derive some important properties of the separating vector
algorithm. We start with the convergence property which states that the vector
S we compute using formula (3.2) is closer and closer to the separating vector in
each searching step if one exists. Then two additional properties of this algorithm
are derived, followed by a discussion on other possible ways to choose the next
searching direction S. In the next section, further extensions of the way to choose

S are discussed.
Lemma 2: If polytopes P and @ do not collide and S; - r; < 0 in the i-th searching

step, then for any separating vector w of P and Q,

Si+1'W>Si'W, 1=0,1,.... (33)

Proof : By formula (3.2),
Si+1 W = Si cW — 2(I‘i . Si)(ri . W)
Since r; - w > 0 as w is a separating vector,

Siy1 W —S;-w=-2(r;-S;)(r;- w)>0. O

Hence if the two polytopes do not collide and S; is not a separating vector, then
Si.1 given by formula (3.2) is closer to any separating vector w than S; is. It is

because by Lemma 2 the angle between S;;1 and w is smaller than the angle between

S; and w.

Another property of the algorithm is that if the pair p; and q; appear in two

consecutive steps, i.e. Tir1 = Ti, then P and Q do not collide, as indicated by the

following lemma.

Lemma 3: IfS; - (qi — pi) < 0 and Pit1 = Pi, Qiv1 = di, then Sit1-Tiy1 >0, te
P and Q do not collide.
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Proof : Since

Sit1 - Tirr = Si-Tip1 — 2(ri - Si)(ri- Tig1)

= Si Iy — 2(ri -Si)(l‘i-l‘i) = —Si i 5 > O

by Lemma 1, P and @ do not collide. O.

Besides, if we consider the Minkowski sum @ — P, the distance from the origin to the
supporting vertex in each step is less than the distance between supporting vertices

found in successive steps as shown in the following property.

Lemma 4: Letm; =q; —p;,1=0,1,.... If S;j-m; < 0 and Siji1 - miy1 <O, then

lmisa — | > [y || (3-4)

Proof : Since p; is the supporting vertex in the direction S;, Si- pi > Si - Pit1-
Similarly S; - q; < S; - Qi+1- Hence S; - m; < S; - mis.

Si+1 My < 0= (Sl — ||m||2
i

(S; - my)(myyy - my)
||m;][2

(S - my;)(my4q - my)

|2

= S -mjg <2

= S; -m; <2
= ||mi”2 > 2(mjy4q - 105)
= [[mjq — m;||> > ||mi+1”2

= ||mysx — myf| > ||myyq|| O

Besides choosing Si;1 as in formula (3.2), another alternative searching direction

Si+1 = {((a; — ps) % Si) % (a1 — Pi)) (3.5)

where (z) denotes z/|z||.
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This searching direction is perpendicular to S; and q; —pi- It is another good choice

for searching direction as indicated by the following Lemma.
Lemma 5 If P and Q do not collide and Si- (qi —pi) < 0 in the i-th searching step,
then for any separating vector w of P and Q with Sg -w > 0,

Si+1'W>Si'W>0, 1=1,2,... (36)

where Siyy 15 gven by formula (8.5).
Proof : Let r; = (q; — p;). Then we have r; - S; < 0.
Siqi-w = ((1i X S;) xr;)-w
(Si — (ry- Si)ry) - w
= ((Si-w)— (ri- Si){xs - w))/L;

where Lz2 = ((I‘i X S,) X I‘i) . ((I‘i X S,) X l‘i) =1- (S, . ri)2.

Because for any separating vector w, (q' — p’) - w > 0 for any point p’ € P, € Q,

ri-w>0. Sincer;-S; <0,
Li(si+1 . W) — Si W= —(I‘i . Si)(ri . W) >0
So
L,-(Si_,.l . W) >S;-w. (37)

Since 0 < L; £ 1 and Sq - w > 0, we have, by induction, Sjy3-w > S;-w>0. O

Note that by choosing S¢ = qc — pc, where p. and q. are centers of P and
respectively, the condition Sg - w > 0 holds. Hence this searching direction also
guarantees that S;yy is closer to any separating vector w than S; is. Besides, if we
consider the Minkowski sum ) — P and let m; = q; — p;i, we have that the length

of projection from m;,; to my; is less than the length of m; as shown below :

Lemma 6: If S; - m; < 0 and Sijtq - mip1 < 0, then
||Ini”2 Z m; - My, 1= 17 27 ... (3.8)
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Proof : Since p; is the supporting vertex in the direction S;, p; - Si > Pis1 - Si.
Similarly q; - S; < qj41 - S;. Hence (q; — pi) * Si < (Qis1 — Piv1) - Si- Using this
inequality, we have

Siy1-miy <0

= (|/m;|[*S; — (m; - S;)my;) - my4 <0

= [|ml|*(S; - miq1) < (my - my31)(S; - my)
= ||m;[](S; - my) < (my - miga ) (S - my)

= [lmy||* > m; - mjyy O

This choice of S;;; by formula (3.5) is more conservative than the vector S
given by formula (3.2) since the latter is more greedy in finding a separating vec-
tor. It is greedy in the sense that the deviation of S;;; from S; is bigger using
formula (3.2). The following example shows how the two strategies differ when P is

a long thin strip and Q) is a single point in 2D space.

\\\\\\\\\ R T S Y A AR AN A AN A LT A AL LU AT L UL AR A AN LAY
PETLLILLLELLLLLELLL, /II/II/III/IIII4IIIIIIIIIIIII/IIII AR R LTI
ALTALAEAATAALHARE AT AR ALA EEAAALALTALASALLAARAA AR AR AR AR LR AR AN A SAA LA LY

Figure 3.6: The conservative searching directions by formula (3.5).

Using formula (3.5) the separating vector can be found in two steps but using
formula (3.2) more than two steps are needed. (In contrast, more steps are needed
using formula (3.5) than using formula (3.2) when P and () are non-overlapping

circles.) Besides, the sequence of supporting vertices found using formula (3.2) will
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Figure 3.7: The greedy searching directions by formula (3.2).

pass across the line L, which connects the closest pair of points between P and Q.
In general, the sequence of supporting vertices found by formula (3.5) will converge
to the closest point monotonously along one side but the sequence of supporting

vertices found by formula (3.2) may jump around the closest point.

In practice, as most objects in virtual environments are of ellipsoid shape, we
find that using formula (3.2) is a better choice on average. Besides, formula (3.2) is

more efficient to compute. Hence it is used in our implementation to compute S;iy;.

3.8 Possible Extensions

Let S& be the searching direction chosen using the greedy approach as in for-
mula, (3.2) and SE be the searching direction chosen using the conservative approach
as in formula (3.5) in the ith step. Then any searching direction lying between S&
and SE, denoted by ST, satisfies the convergence property given by Equation (3.3).
The vector ST is defined by

( Sa-w >0, forany separating vector w
ST, = {(anSE; + (1 - s1)S8y), 0< i1 <1,4=0,1,... , where
Si(il = S:r - Z(I‘i g S'ir)ri, = 0, 1,...

SC,={(r;x8F) xr), i=0,1,...

(3.9)

\
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Note that the o; are arbitrary numbers in [0, 1].
Lemma 7: If polytopes P and @ do not collide and ST - r; < 0, then for any
separating vector w with ST - w > 0,
S;I:H-W>S;r-w, 1=0,1,...
Proof : Fori=1,2,...,
sSE + (1~ a)SCIP = a2 + (1 - 05)? + 2a4(1 — 02)SC - S
Now, asri_y -SF¥, <0

S-S = (ST, - 2zt ST y)ricr) - ((kin x SE4) X rioa)
SE, — (rica - SEy)ria
\/1 (rj—1-SE )2
1—(rioa-SE;)* —2(ri1 - SE,)? + 2(ri-1 - ST, )?
\/1 — (rie1 - SEy)2

= \/1 — (ri-1 - SE,)?

= (52{1 — 2(r-1 - S;I;l)ri—l) .

Hence
louSE + (1 — )STII> = of + (1 — a)® + 20;(1 — o)ST - ST
< a4+ (1 =)+ 2041 — o)
< 1
So |lesSe + (1 —)SE)| <1, i=1,2,...
When 4 = 0, since by Lemma 2, S§ - w > ST -w > 0 and by Lemma 5,

S¢-w>8F-w>o0.

or o _ ealSF W)+ (1—an)(SE-w)
v 6355 + (1 = oS
S a1 (ST -w)+ (1 —a1)(ST - w)
lcaSE + (1 — 1)SP]
SE'W
o SE + (1 — a1)ST|
> ST.-w
0
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Assume ST -w > ST . w > 0 is true for all i < k.

When 4 =k + 1, since by Lemma 2, Sg , - w > ST - w > 0 and by Lemma 5,

SE.,-w>ST.-w>o.

T
Skt W =
>
>
>

k41 (SEy - W) + (1 — o) (SE,, - W)
otk 4181 + (1~ ak41)SE |
1 (Sig - W) + (1 — et )(SE - w)
”ak+lsl?+1 +(1- ak+1)sl(3+1||
ST - w
k418811 + (1 — aks1)SE |
ST.w

0

By induction, S{, - w > ST - wis true for all§ > 0. O

Hence we have a family of searching directions ST to choose from when «; varies.

It is still not known how to determine «; adaptively so that the number of searching

step is minimized. Our experiments show that in most cases the vector given by for-

mula (3.2) yields slightly faster running time than the vector given by formula (3.5)

does. For simplicity we always choose o; = 1 for all s.
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Chapter 4

Collision Detection

Obviously, a termination condition is needed in the above separating vector
searching step, for otherwise the search might run without stopping when there is
a collision. This chapter extends the separating vector algorithm so that it not
only eliminates non-interference polytopes but performs exact collision detection
between polytopes. With the addition of a termination condition, our separating
vector algorithm guarantees to find a separating vector in a finite number of steps

if one exists, otherwise the algorithm will report collision.

4.1 The Collision Condition

It is shown in Section 2.3 that two polytopes P and @ collide if and only if the
origin O € M where M = Q — P. So, as M is convex, if the origin is outside M

there exists w such that

m-w>0 forall meM (4.1)

and this w is a separating vector. Conversely, w does not exist if there is a collision.
The existence of w is related to the problem of determining whether there is a w
such that w - r; > 0 for all 4 where r; = m;/||my|| = (q; — pi)/||9; — pi||- Instead
of solving this problem, we simplify it by exploring the geometrical property behind
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the problem.

Geometrically, Equation (4.1) implies that there exists a separating plane H
passing through the origin such that all the points rg, ..., I'r on the unit sphere lie
on one side of the plane H (see Figure 4.1(i)). Therefore, if it is not possible to find
such a plane H, then the two polytopes collide.

4.2 Existence of a Separating Plane

11ev7vﬁ

(iii)
Figure 4.1: Determining the existence of a separating vector.
When a point r; is added, an incremental algorithm is used to find a plane H;

with normal vector w; such that rg, ..., r; all lie on the positive half space of H;.

We propose two methods to determine if the plane H; exists. The first one
is called the hemisphere method which reduces the problem into determining if all
points are lie on a hemisphere. The second one is called the half-plane intersection
method which projects the hemisphere associated with the normal r; into a halfplane

and computes the intersection of all such halfplanes.

4.2.1 Hemisphere Method

Initially, wy is chosen to be the bisector of rg and ry. At the ¢-th iteration, if

r;-wi—1 > 0, then r; also lies on the positive half space of H;_,, so we set w; = w;_y;
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otherwise, r; must be one of the boundary points on the convex hull (a spherical
polygon) formed by ro, ..., r; on the surface of the sphere (see Figure 4.1(ii)). If
there exists a plane H; passing through the origin such that all the above points lie
on one side of EL-, then we can always rotate H, into a plane H; such that H; touches

r; and all the points rj,  =0,1,...,4, are on one side of H;.

Let G; be the plane passing through the origin with normal vector r;. Then
project ro, . ..,ri_; along the vector r; into points ry, ..., ri_; on the plane G; where
vectors parallel to r; are ignored (r; will be projected to the center). If there exists
a line L on the plane G; that passes through the origin such that all the points
rg, - --,Ti_; on G; lie on one side of the line L, then w;, which is the normal vector of
H;, is taken to be the vector on the plane G; perpendicular to L (see Figure 4.1(ii1)).
Conversely, if such a line L does not exist, then there does not exist a vector wj

such that Equation (4.1) is satisfied; that is, the two polytopes collide.

The existence of the line L can be determined in O(7) time as follows. Let M
be the rotation matrix that transforms r; to the z axis (note that M is not unique).

To be specific, denoting r; = (z, v, z), one may choose

s2/d y2/d (@ +9)/d
M=\ —y/d z/d 0 , where d = /22 + 92 (4.2)

z Y z

Then the projection of r5,  =0,...,% — 1, along r; are determined by dropping the

z value of point M * rj. The algorithm is as follows (see Figure 4.1(iv)):

If r; - w > 0, return non-collision.
Let r, = rj and rp = r; such that rp is in clockwise direction with respect to ra.
Foreachrj, j=2,...,i—1
Substitute r} in the equations of line Ora. Let the sign of the result be Sign,.
Substitute r} in the equations of line Ory. Let the sign of the result be Signs.
(i) If Sign, > 0 and Sign, < 0, continue.
(ii) If Sign, > 0 and Signy, > 0, rp = r}.
(ii) If Sign, < 0 and Signy < 0, ra = L
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(ii) else return collision.
Update w = M~ Y(< ry +1p >)

Return non-collision

4.2.2 Half-Plane Intersection Method

The existence of a separating vector can also be determined in another way.

Without loss of generality assume ro = (0,0, —1). Let G denote the plane z = —1.

(1) (ii)

Figure 4.2: (i) Two cases of the region 4; on G (ii) Choosing the new w.

A plane through the origin with normal r; intersects the plane G in a line (see Figure
4.2(i)), which cuts the plane G into two half planes. Let A; denote the half plane
satisfying z; X + y;Y > —z; where r; = (2;,4;, 2:)- Then the existence of a plane
H through the origin such that all the r; lie on one side of H is equivalent to that
ﬂ;?:o A; # 0. Note that ﬂj-zo Aj,1=0,1...,k, are convex polygons. Although the
intersection of a half plane and a convex polygon with ¢ vertices can be found in
O(log1) time [19], the reconstruction of the polygon (5o A; may take O(¢) time in
each step where ¢ < k. Afterwards, we can set w; as a vector connecting the origin

to any point inside ﬂj-=0 A;, provided that it is non-empty.

This method has the advantage that it reduces the problem from 3D space to
2D plane directly. Besides, this method can give a better approximation of w; in
each step if it is chosen as in Figure 4.2(ii). This w; can help the separating vector

algorithm terminate faster as discussed in the next section. However, it is more
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complicated to implement and the overhead is larger. Since in a virtual environment,
the separating vector algorithm terminates in less than four steps in most cases, our

implementation uses the first method which has a smaller overhead.

4.3 Termination

In the above searching process, by Lemma 3, if m; = q; — p; € @@ — P repeats
itself in two consecutive steps, P and @ do not collide. However, if m; reoccurs after
more than one step before Equation (3.1) is satisfied, we cannot conclude that P
and @ do not collide. In this case, in order to prevent the algorithm from running
without stop, we set S;.1 = w; which is found in the above section. Then the vector

Mit1 = Qi+1 — Pi+1 thus found with S;;; = w; has the following property.

Lemma 8: If m;;y = my; for some j, 0 < j < i, then Si;1 = w; is a separating
vector of P and Q, that is, P and Q do not collide.

Proof : Since

Sis1 - My = wi-my > 0,
by Lemma 1, P and @ do not collide. O

Lemma 8 implies that either the algorithm stops with S;,; being a separating
vector or m;41 is a new vertex of M that has not been visited before. This guarantees
that the total number of vertex pairs repeated during the search is at most the

number of vertices of M. So the algorithm will terminate in a finite number of

steps.

To summarize, the vector Siyq is either generated from S; by formula (3.2) or
set to be w; when there is a reoccurrence of m; = q; — p;. For a sequence of vectors
{S;} thus defined, when S; -r; > 0 for some ¢ for the first time, we can conclude that
S; is a separating vector, and the polytopes P and ) do not collide. The polytopes
P and Q collide if there does not exist w; such that w;-r; > 0, 7 =0,1,...,1 for
some 7. Note that when m; reoccurs in two consecutive steps, P and ¢ do not collide

by Lemma 3. Moreover Lemma 3 and Lemma 8 are necessary because of numerical
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errors in implementation. For simplicity, they do not appear in the pseudo code of

the separating vector algorithm in the appendix of this thesis.

4.4 Complexity

As pointed out earlier, the dynamic version of our algorithm makes use of time
coherence between successive frames so to run in expected constant time empirically.
Let the number of vertices in P and @ be n and m respectively. Without making use
of coherence, our implementation uses O(n +m) time to search for new supporting
vertices in P and @, and O(7) time to detect collision at the i-th iteration. So the
worst time complexity is O((n+m+k)xk), where & is the total number of iterations

performed.

The time complexity for searching for a new supporting vertex in P can be
reduced to O(logn) using the hierarchical representation of polytopes which will be
discussed in Section 5.3. Besides, it takes constant time to check whether a pair of
supporting vertices has been visited previously in the algorithm. The method is to
keep track of a 2D array with each entry being a timestamp for a pair of vertices.
Initially all the entries are reset to zero. There is also a global variable called counter,
which is incremented every time the collision detection algorithm is called. During
the search for a separating vector, if the timestamp for a pair of supporting vertices
is not equal to the counter, that timestamp is set to the counter; if it is equal to
the counter, the pair has been visited before. When the maximum limit for the
counter is reached, which is the maximum long integer of the language used, all the

timestamps are reset to zero.

Hence the worst case running time of the separating vector algorithm can be
reduced to O((logn + logm + k) x k). So far the only upper-bound known to us
for k is O(mn). However, with temporal coherence being exploited in a virtual
environment, it is found empirically that k is very small even for very large n.
For a pair of ellipsoid-shaped polytopes, the maximum value of k is less than 25

when n < 1000. In practice, it is observed that the empirical running time of this
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algorithm in a dynamic environment is almost constant.
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Chapter 5

Finding the Closest Pair of Points

When there is a collision, the information of the closest pair of points is useful
in computing the response. In this chapter, we will further extend the separating
vector algorithm so that it can compute the closest pair of points when polytopes
collide. We will first review the idea of Gilbert’s algorithm, which computes the clos-
est pair of points between two polytopes in expected O(n) time. Then we will review
Johnson’s algorithm which is the underlying layer of Gilbert’s algorithm to compute
the closest pair of points between two simplices. Afterwards, we will describe how
to improve the theoretical running time of Gilbert’s algorithm from expected O(n)
time to expected O(logn) time using the hierarchical representation of polytopes.
Besides, we will describe how this complexity can be further improved when tempo-
ral coherence is exploited and how to modify the termination condition of Gilbert’s
algorithm so that it is more robust. Finally, we will integrate the improved Gilbert’s
algorithm into our separating vector algorithm so that the separating vector algo-

rithm is capable of reporting contact points.

5.1 Review of Gilbert’s Algorithm

The idea of Gilbert’s algorithm is as follows. Initially a set S with < 4 points is
chosen arbitrarily from the vertex set of M, where M = @ — P. Then the closest
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(i) (ii)

Figure 5.1: A 2D example of how Gilbert’s algorithm works.

point Cy, from the convex hull of S (which is a simplex) to the origin is computed
using constant time [18]. This algorithm is described in the next section. The closest
point C,,, computed can be expressed as :
Cm=) Am; where > X, =1, A >0, m€S (5.1)
i=1 i=1
Let V be the convex hull of vertices m; in the above equation. Then V C 5. When

there is no collision, the number of vertices in V' must be < 3.

After C,, 1s computed, a supporting vertex m of M in the direction —Cy, is
found. This is done by finding the supporting vertices p and q of P and @ in the
direction Cy, and —C,,, respectively, and setting m = q — p. Note that this step
takes linear time in Gilbert’s algorithm because it simply evaluates the inner product
between all the vertices and the supporting direction, then chooses the maximum
one. If the condition m - m = m - Cy, is satisfied, the closest point is given by
Equation (5.1) and the algorithm stops. The closest pair of points are given by

G, = zr:/\ipi , Pi€P
i=1

Cq = 2/\1(11 » QiGQ,Wheremi::qj_pi

i=1
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If m-m = m- C,, does not hold, the algorithm sets S = V' U {m} and repeats.
From the above equation, we see that not only we can find the closest pair of points
but also the closest pair of features between them. For instance, if there are two
distinct p; and three distinct q; in V, then the closest pair of features is an edge in
P and a face in Q. Gilbert observed empirically that the algorithm will terminate
within a constant number of iterations [18]. In other words, the algorithm runs in

expected linear time.

The complete algorithm is as follows:

1. Set S = {my,my,...,m;}, r < 4.

2. Compute the closest point C,, and the convex hull, V', of Cp,.

3. Compute the contact function m = Cp(—Cp) = Co(—Cum) — Cp(Cp)-
4. fm-m =m-Cy, return Cp,.

5. Otherwise, set S =V Um and goto step 2.

As an example of how the algorithm runs, see Figure 5.1(i). If we set S =
{m;, m2, ms} initially, then after one iteration we have V = {ma,m3}, m = my
and S = {mg, my, my}. After two iterations we have V = {ms, m4}, m = mjs and
S = {m3, my, ms}. Finally, we have V = {my4, ms} and the closest pair of points
are given by Equation (5.1).

If we set S = {mg} initially (see Figure 5.1(ii)), then we have V = {mz},
m = ms and S = {m2,ms} after one iteration. After two iterations we have
V ={ms}, m=my and S = {ms, my}. Finally we have V = {my, ms} and the

algorithm stops.

5.2 Review of Johnson’s Algorithm

For completeness, we describe the algorithm that computes the closest point

from the origin to an elementary polytope P where P = {p1,P2;--- ,Prth Pi € E",
1 < r < n+1. This algorithm is the underlying layer that Gilbert’s algorithm
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relies on. The complete algorithm can be found in [51]. The algorithm is specially
designed to be efficient when the number of points in P is small and when the set P

is affinely independent. When the algorithm is terminated, the solution is expressed

as

Pclosest = Z )\ipi (52)
i€l

where
X>0, Y N=1, i€l C{l,...,r}
i€l
and the set P, = {p; : 2 € I,} C P is affinely independent.

Since 7 is small, it is effective to take a combinatoric approach where all subsets
of P are successively tested until a representation of the above form is found. Define
real numbers A;(P;), 7 € I, and A(P,) by

A{ps}) = 1,ie{l,...,r} (5.3)
Aj(Psu{p;}) = ;Ai(Ps)pi (P —py), J €IS, k=min{ili € L}. (5.4)
A(P) = E;Ai(Ps) (5.5)

where I¢ is the complement of I,.

The above equation can be viewed as a recursion which determines A;(P,) in order of
increasing cardinality of P;. The conditions that A; = A;(Ps)/A(P,) is the solution
of Equation (5.2) are

A(F;) > 0;
Ay(P,) >0 for each i€ I; (5.6)
A;(P;U{p;}) <0 foreach je It
The algorithm to compute the closest point is therefore to evaluate all subsets of P
until all the above conditions hold. On rare occasions the algorithm will not find a

P, that satisfies the above three conditions. This is due to numerical roundoff error

and the case that P is affinely dependent or nearly so. A back-up method is used
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as describe in [18] when this situations occurs by choosing the numerically best P;.

This is the one with the minimum value from the origin to aff(P). The formula is

given by

\/JPS)-I Y Ad(P)pi- pe, k= mini € 1, (57)

€l

subject to A(P;) >0 and A;(P,) > 0forall j € I,.

Since P is a simplex with n < 3, the algorithm finds the closest point from the

origin to P in constant time.

5.3 Using Hierarchical Representation to Search

for a Supporting Vertex

The time complexity for searching a new supporting vertex in a polytope P can be
reduced to O(logn) with O(n) preprocessing time where 7 is the number of vertices
in P, using the hierarchical representation of polytopes as described in Section 2.5.
Let hier(P) = {P,, ..., P,} be the hierarchical representation of polytope P where
h, the height of the hierarchical representation, is O(logn).

Using this representation, we can find a supporting vertex of polytope P in
direction S by first finding the supporting vertex vy of polytope Py, which takes
constant time since B, is a simplex. Then local search is used to find the supporting

vertex v; of P; in direction S starting from vi.q, fori=h—-1,h-2,..., 1.

Lemma 9: Fori=1,...,h—1, let viyy be a supporting verter of P,y with respect to
direction S. Then either viyy 13 also a supporting vertez P; with respect to direction
S or a supporting vertex vi of P; with respect to S is a neighbor of viy1 in P;.
Proof - Let v; be a supporting vertex of P; with respect to S. Since Fy; C B,
S-vi>S-viy1. When S-v; =S - vy, clearly, vy is also a supporting vertex of
P; with respect to S.

“When S-v; > S- vy, we must have v; € P;1;; for otherwise v; would be a

supporting vertex in P, instead of viyy. Suppose v; is not a neighbor of v;,; in
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P;. By property (iv) of the hierarchical representation, all the neighbors of v; are
vertices of P;y;, and these neighbors do not include Vi+1. Therefore the open line
segment ViViy; has nonempty intersection with the polytope P,yi. Let a point in
this nonempty intersection ¥iviz7 ) Py be vy = (1 — A)vi+ Aviyy for some ) with
0 <A< 1 Then

S'V,\:(l—/\)S'Vi+/\S-Vi+1>S'Vi+1.

This contradicts that vy is a supporting vertex of Py, with respect to S. Hence

v; is a neighbor of vi; in B;. O

Since h = O(logn), a supporting vertex of P = P, can be found in O(logn)

time, assuming that the degrees of vertices in P; are bounded by a constant.

In a virtual environment we can make use of temporal coherence to further
improve the running time of finding a supporting vertex. The idea is to use a good
estimation of the supporting vertex as an initial vertex, then employ local search
to find a supporting vertex. This vertex chosen is described in Section 3.5 and
Section 3.6, basically this is the cached supporting vertex in the preceding time
frame. Using local search, each supporting vertex searching step takes O(d) time
where d is the number of vertices visited when walking from the initial vertex to a

supporting vertex.

We are currently investigating whether local search can be combined with the
hierarchical representation of polytopes to achieve a better running time of O(logd).
So far we have proved that it is true for 2D case. The question of whether it also

holds for 3D case is subjected to further research.

5.4 The Improved Gilbert’s Algorithm

We have proved in the above section that using the hierarchical representation of
polytopes, the time complexity for searching a new supporting vertex can be reduced
from O(n) to O(logn) with O(n) preprocessing time and O(n) space. Gilbert claims

that the expected number of iterations of his algorithm is constant. If this is true,
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the running time of our improved Gilbert’s algorithm is expected O(logn), which
is the first known expected O(logn) algorithm for finding the closest pair of points
between two polytopes. Besides, it is more practical than the current best theoretical

time of O((logn)?) in [43] for finding the closest pair of points.

In a virtual environment, we can make use of temporal coherence to further in-
crease the efficiency of searching a supporting vertex. The idea is to give a good
estimate of the closest points as an initial set S and use local search to find a sup-
porting vertex. This initial set S chosen is described in the next section. As a result,
each supporting vertex searching step takes O(d) time where d is the number of ver-
tices visited when walking from the initial vertex to the supporting vertex. Using
local search, the time complexity of the improved Gilbert’s algorithm is expected

O(d) time which is nearly independent of polytope’s complexity.

To make the algorithm robust, we modified the termination condition m-m =
m- Cy, to avoid numerical imprecision of the floating point comparison encountered.
To solve this problem, the supporting vertex m found in each step of the algorithm
is recorded. If there is a reoccurrence of supporting vertices then the algorithm
terminates. Since the expected number of iterations performed in the algorithm is
constant, checking the reoccurrences of supporting vertices does not change the com-
plexity of the algorithm. This new termination condition holds because if the closest
point is found in the current step, the supporting vertex found in the next iteration
must be in V. Eventually, there is a reoccurrence of supporting vertices. Besides,
there is no reoccurrence of supporting vertices in the original Gilbert’s algorithm.

Therefore, this modified termination condition is simpler and more robust.

The improved Gilbert’s algorithm is as follows:

1. Set S = {my,..., my}, r < 4.
2. Compute the closest point Cp, and the convex hull, V, of Cp,.
3. Compute the contact function m = Cy(—Cr) = Co(—Cm) — Cp(Cm) using

local search.
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4. If m appears before, return Ch.

5. Otherwise, save m, set S =V Um and goto step 2.

Experiments have shown that if the initial point is chosen to be the closest
point found in the preceding time frame, the performance of this improved Gilbert’s
algorithm alone (i.e. without using the separating vector algorithm) outperforms

the closest feature algorithm [1] especially when the complexity of polytopes is high
(see Section 6.2).

5.5 The Combined Algorithm

=

\ Go back one
time frame compute the pair
of closest points

when collision

Figure 5.2: Computing the closest pair of points in the case of collision.

In animation and robotics, the closest pair of poiuts is important for computing
real-time responses when there is a collision. But it is usually the case that the
closest pair of points is of no use when there is no collision, e.g. in motion path
planning [52] and virtual reality fly-throughs [39]. The choice of not computing the
closest pair of points in every time frame is also adopted in the method of separating

plane [12] and various bounding boxes algorithm.

On the other hand, it is often too late to compute the closest pair of points once

collision has been detected. This contradictory requirements suggest us to adopt a
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new strategy that computes the closest pair of points only at the latest non-collision
time frame when collision is detected (see Figure 5.2). This is achieved by saving
the transformation matrix of the preceding time frame in the algorithm. If the
separating vector algorithm detects that there is collision in the current time frame
and the closest pair of points is useful to the program, then the closest pair of points
is computed by the improved Gilbert’s algorithm using the transformation matrix

of the immediately preceding time frame.

To reduce the time needed to save the transformation matrix at each time frame,
we can just swap the two pointers which point to the memory occupied by the
previous and current transformation matrices. This achieves the same effect as

saving the old transformation matrices but with much less costs.

Since the separating vector algorithm does not find the closest pair of points at
every time frame, we cannot use the closest pair of points in the preceding time frame
to initialize the improved Gilbert’s algorithm in the current time frame. Neverthe-
less, the separating vector algorithm usually finds some reoccurrence vertices when
there is a collision, so these vertices are used to initialize the improved Gilbert’s al-
gorithm. In rare cases if there are no reoccurrences vertices and there is a collision,
the last two supporting vertices encountered are used. When the improved Gilbert’s
algorithm returns, a vertex on the resultant convex hull (select any one) and the line
connecting the closest pair of points are cached. They are used as initial vertices
and initial searching direction for the separating vector algorithm in the next time
frame. Thus the results in the separating vector algorithm are useful to initialize the
improved Gilbert’s algorithm and the results in the improved Gilbert’s algorithm

are useful to initialize the separating vector algorithm in the next time frame.

The reasons why we combine the separating vector algorithm and the improved

Gilbert’s algorithm for collision detection and finding the closest pair of points are

1. Both algorithms use local search to locate vertices for collision detection. The
local search exploits both temporal and geometric coherences in a virtual en-

vironment. Therefore the time complexity of both algorithms are nearly inde-
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pendent of polytopes’ complexity.

2. Both algorithms consider only vertices of polytopes and the neighboring re-
lationship between them. Therefore the data structure of polytopes consists
of merely vertices and a list of neighboring vertices for each vertex, without
other information such as edges, faces and the relationship between them. This

greatly reduces memory usage and simplifies the coding of the algorithm.

3. Both algorithms compute good initial points for each other when there is a
collision. Therefore, they are highly dependent on each other and the effort

spent in one algorithm is useful to the other.

5.6 Dealing with Concave Polyhedra

In real world, there are many non-convex polyhedral objects. The problem of
collision detection between them cannot therefore be tackled directly with our algo-
rithm. However, it is observed that many concave polyhedral objects can be repre-
sented by a union of convex polyhedra or composed of several non-convex subparts,
where each non-convex subpart may be further represented as a union of convex
polyhedra or non-convex objects. Therefore we suggest using the hierarchical tree
representation of objects as proposed in [15]. Each node of the tree represents non-
convex object that can be decomposed further, while each leaf of the tree represent
a convex object. We propose to extend the tree so that each leaf of the tree can also

be a non-convex object that cannot be decomposed further (e.g. a torus).

The convex hull is computed for each object in the node of the tree. The sepa-
rating vector algorithm is used to check the convex hulls of two objects. If there is
a collision, their children will be expanded and all children of one parent node are
checked against all children of the other parent node. This expansion will be done
recursively if there is also a collision between the children. For a non-convex leaf
object (which cannot be further decomposed), we propose to find its convex hull

first. If there is a collision between the convex hulls of two objects, then the method
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using OBB-Tree [26] is used. Thus for non-convex objects, we propose to prepro-
cess it with hierarchical tree representation and OBB-Tree representation first, then
apply our separating vector algorithm or the OBB-Tree algorithm. We believe that
using this approach collision detection of concave objects can be done efficiently and

concave objects are decomposed (in OBB-Tree algorithm) only when necessary.
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Chapter 6

Implementation

In this chapter we will discuss the implementation details of our algorithms.
Besides, we will carry out various experiments to verify the properties of our al-
gorithm. To test how efficient our algorithm is, we will give detailed comparisons
between the two collision detection libraries : Q.COLLIDE - the implementation
of our separating vector algorithm, and I_COLLIDE - the fastest collision detection
library for polytopes so far.

6.1 Quick Collision Detection Library

We have implemented the separating vector algorithm and the improved Gilbert’s
algorithm in a collision detection library package called Q_COLLIDE - Quick Colli-
sion Detection Library, in order to test the efficiency of our algorithm and verify some
of its properties. This library is a modification of another collision detection library
package called I COLLIDE - Interactive Collision Detection Library [1]. I.COLLIDE
is a fast collision detection library for polytopes written by M. C. Lin. Besides, the
source code is publicly available !. I.COLLIDE uses the sweep and prune technique
to determine whether two bounding boxes overlap. Temporal coherence is exploited

so that the algorithm runs in expected O(n + e) time for n bounding boxes and e

‘http:/ /www.cs.unc.edu/~manocha/I_COLLIDE.html
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intersections of bounding boxes. If bounding boxes of two polytopes overlap, the
closest features tracking algorithm, which runs in expected constant time, is used
to keep track of the closest features between them. The method works by finding
and maintaining a closest pair of features on the two polytopes as they move. If the
algorithm fails to maintain the closest features as in the case of collision, another
linear programming algorithm is invoked in I_COLLIDE to tell whether the two
polytopes actually collide or not.

We replace the underlying layer of I.COLLIDE which tracks the closest pair of
features and the linear programming algorithm in I_COLLIDE by our separating
vector algorithm and the improved Gilbert’s algorithm. When the sweep and prune
technique determines that bounding boxes overlap, our separating vector algorithm
is used. If the separating vector algorithm detects that there is a collision, then the
improved Gilbert’s algorithm is used to compute the closest pair of points between
the two colliding polytopes using the previous transformation matrices of polytopes.
For simplicity, we do not use the hierarchical representation of polytopes. Besides,
the line connecting the two polytopes’ centers is used as the initial searching direction
when bounding boxes overlap for the first time. A precomputed 8 x 16 table for the
supporting vertices is used as explained in Section 3.5. We have made the source
code of Q_-COLLIDE, and testing data publicly available for interested researchers
2.

The data structure of polytopes used in Q_.COLLIDE is simple. It holds a list
of vertices, the coordinates of the centroid, the transformation matrix and the axis-
aligned bounding box. The data structure of each vertex contains geometric infor-
mation about vertices in the local coordinate system of the polytope and a list of
its neighboring vertices referenced by pointers. The list of neighboring vertices can
be arranged in any order. There is also a data structure for every pair of polytopes
with overlapping bounding boxes. This structure contains information of a cached

separating vector, a cached supporting vertex for each polytope and the closest pair

of points.

Zhttp:/ /www.cs.hku.hk /~tlchung/collision library.html
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The differences between Q_COLLIDE and I_.COLLIDE are :

1. Q-COLLIDE uses the separating vector algorithm whereas I.COLLIDE uses
the closest features tracking algorithm as the main collision detection algo-

rithm when bounding boxes overlap.

2. I.COLLIDE computes the closest pair of features at every time frame whereas
Q-COLLIDE computes the closest features/points pair only at the time frame

immediately before a collision occurs.

3. Q.COLLIDE computes only the closest pair of features whereas I_.COLLIDE

computes both the closest pair of points and the closest pair of features.

4. Q_COLLIDE uses less memory and is more efficient then I_.COLLIDE.

For flexibility, a procedure is available in Q_COLLIDE as an option to find the
closest pair of points at any time using the improved Gilbert’s algorithm. Besides
there is an option available in Q_COLLIDE which uses the improved Gilbert’s al-
gorithm directly (i.e. without using the separating vector algorithm) so that it can
compute the closest pair of points between two polytopes in every time frame. In
the next section, we will show that the performance of this improved Gilbert’s al-
gorithm alone is already better than I COLLIDE. In the case that the closest pair
of points is not useful even when there is a collision, another option is available in
Q-COLLIDE which can turn off the improved Gilbert’s algorithm altogether and

only the separating vector algorithm is used.

6.2 Experiments

Experiments have been carried out to investigate some properties of our algo-
rithm. Besides, we will compare the performance of our algorithms with the closest
feature tracking algorithms. The simulation uses polytopes of the same number of
vertices moving in a closed environment. The simulation is done on SGI/Indy ma-

chine (R4600). To find the real difference in performance between the two libraries,
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only the simulation time for collision detection is measured. This is done by not

rendering the scene with the graphics pipeline.

Polytopes of three different shapes are used: an ellipsoid, a thin rod, and a flat
plate, obtained by randomly sampling points on the surface of an ellipsoid, a thin
rod, and a flat plate, respectively. They provide a variety of different shapes for
testing. Unless otherwise specified, each object has its translational velocity equal
to 5% of its radius and rotational velocity 10 degrees per time frames. When there
is a collision between two polytopes, their rotational and translational velocities are
reversed. Two snapshots of the simulated environment are shown in Figure 6.1 and
Figure 6.2.
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Figure 6.2: The experiment with 100 polytopes in the environment and n = 1000.
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6.2.1 Properties of Separating Vector Algorithm

Experiments have been carried out to investigate the number of the searching
steps k for polytopes with different numbers of vertices 7. The simulation uses 500
polytopes of the same shape in the environment. In Figure 6.3, the value of k is
measured when collision test is called between non-colliding objects of 500 vertices.
This collision test is called only when the tightest rectangular bounding boxes (as
found in [1]) of two polytopes overlap. The results show that more than 95% of non-
colliding objects are identified in the first three steps for all three shapes. Moreover,
in the case of ellipsoids more than 99% of non-interference objects are identified as

non-colliding in four steps.
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Figure 6.3: Number of searching steps when there is no collision.

Figure 6.4 measures the value of £ when collision test is called for both colliding
and non-colliding objects of 500 vertices. The results show that on average more
than 80% of collision tests can be completed within three searching steps. Moreover,
for polytopes of different numbers of vertices, a similar curve to that in Figure 6.3
and Figure 6.4 is obtained. This indicates that the algorithm runs in almost expected
constant time. We also noticed that there are reoccurrences of supporting vertices
during the search for separating plane in less than 0.1% of collision tests for the

polytopes which do not collide.
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In Figure 6.5, the maximum value of & for each case is recorded. From the figure,
the maximum value of k is around 22 for ellipsoids, increases slightly from 20 to 40
for flat plates and increases from 25 to 55 for rods when n increases from 10 to
1000. It is noticed that the algorithm performs best for ellipsoid-shaped objects,
and becomes less efficient for objects with plate-shape or rod-shape. The results
also indicate that even in the worst example we have constructed involving thin

rods and flat plates, the maximum value of k is small as compared to n. Besides,
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it is noted that this worst-case value of k happens very rarely (typically < 0.01% of
collision test) in the experiments. This explains why our algorithm runs significantly
faster than others on average as shown in the next experiment, especially in virtual

environments where we can make use of temporal coherence.
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6.2.2 Comparison with I_COLLIDE

We have compared our collision detection library Q_COLLIDE with I_COLLIDE,
the fastest collision detection library so far. The closest features tracking algorithm

(CF) which finds the closest pair of points in every time frame is compared against

1. The separating vector algorithm (SV), which does not find the closest pair of

points at all.

2. The improved Gilbert’s algorithm (Gilbert), which finds the closest pair of

points in every time frames.

3. The combined algorithm (SV + Gilbert), which finds the closest pair of points
only in the preceding non-collision time frame immediately before a collision

occurs.

A total of 100 polytopes, with a mixture of the above three shapes and the same
number of vertices, are used in the environment. Figure 6.6 and Figure 6.7 show
the cases when n = 20 and n = 500 respectively, and the translational velocity
is gradually increased from 2% to 20% of object radius per time frame. From
the figures, the simulation time of SV algorithm increases slightly; however, the
simulation time of CF algorithm increases substantially. Besides, the performance of
the improved Gilbert’s algorithm alone (without using separating vector algorithm)
is better than CF algorithm when the translational velocity or the complexity of

polytopes is high.

Figure 6.8 and Figure 6.9 show that, when the rotational velocity is increased
from 5 degrees to 40 degrees per time frame, SV algorithm takes only a little longer
time, while the CF algorithm takes substantially longer time. Here the set up is the
same as above. In all cases, simulation time for the combined algorithm only needs
a little more time than the SV algorithm. This indicates that the improved Gilbert
algorithm is efficient. This fact also conforms with that in a virtual environment

the probability of collision is relatively small compared with non-collision cases.

60




There are four reasons why our separating vector algorithm is significantly faster,
and even the improved Gilbert’s algorithm alone is faster, than the closest fea-
tures tracking algorithm if translational/rotational velocity increases or complexity

of polytopes is high.

1. When the translational/rotational velocity increases or the complexity in-
creases, the CF algorithm needs more time to walk around on the boundary of
polytopes in order to find the closest features, since each step may walk from
vertex to edge, edge to face, face to vertex etc. However, in the SV algorithm
and the improved Gilbert’s algorithm a walk is always from vertex to vertex

so they proceed “faster”.

2. The condition for a walk to take place in the SV algorithm or the improved
Gilbert’s algorithm is simply a comparison between dot product of vectors.
But in CF it requires an involved checking about whether one feature lies

inside the Voronoi regions of other features.

3. CF transforms every feature along the walking path to the world coordinate
system for comparison. However, in SV and the improved Gilbert’s algorithm,
the comparison is done in the local coordinate system of polytopes only. Only
two coordinate transformation are required for a searching for a supporting
vertex and there is no need to transform every vertex along the walking path

to the world coordinate system during the search.

4. The I_.COLLIDE library needs to call another linear programming algorithm
for exact collision detection every time when there is a recycling of features
(e.g. a collision occurs). Thus it runs in O(n) time in the case of collision
and cases where the closest features algorithm cannot resolve conflicts. How-

ever, Q_COLLIDE uses a nearly constant time algorithm even when there is

a collision.

As a result, for velocity that is 20% of object radius per time frame and the num-
ber of vertices of each polytope is 500, we observe a nearly 28 times speedup by

Q-COLLIDE over . COLLIDE.
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Lastly, Figure 6.10 and Figure 6.11 show the case when the density of the envi-
ronment changes. Again, the combined algorithm is faster and more efficient than
the CF algorithm in all cases. This indicates that our algorithm is more efficient in

a highly dense virtual environment in which there are many moving objects.
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Chapter 7

Conclusion

We have proposed an efficient exact collision detection algorithm for polytopes in
virtual environments. The algorithm is based on a simple technique to quickly locate
a separating plane between two polytopes if they do not collide, or otherwise test
some simple conditions to report collision. As the contact points between two objects
when they collide provide useful information for impulse computation, we improved
the Gilbert’s algorithm and integrated it with our separating vector algorithm to
compute the closest pair of points when there is a collision. Our algorithm is fast and
simple to implement. Taking advantage of geometric and temporal coherences in a
dynamic environment, our algorithm uses caching, preprocessing, and local search
to run in expected constant time empirically. A collision detection library, called

Q_COLLIDE, based on our algorithm is publicly available ®.

Lhttp://www.cs.hku.hk/~tlchung/collision library.html
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Appendix
I. Pseudo Code of the Separating Vector Algorithm

/>

Input : Polytopes P and Q, with origin at the center in the local coordinate system.

The rotation and inverse rotation matrices of P and Q: Rp, Rg, invRp, invRq.

The translation vector of P and Q: Tp, Tqg.
Return : TRUE if P and § collide, otherwise return FALSE.

*/
Boolean SeparatingVector(P, Q, Rp, Rq, invRp, invRq, Tp, Tq)
{
If (bounding boxes overlap for the first time) {
S = <Tq - Tp>; /* where <x> is the normalized vector of x, section 3.4 */
use S to get vertices p and q from the precomputed table; /* section 3.5 */
b
Else {
retrieve S, p, q from cache; /* section 3.6 */
}
k = 0;
do {
k++;
p = SearchSupportVertex(P, p, invRp*S); /* section 3.3 */
g = SearchSupportVertex(Q, q, invRq*(-S));
r_k = <(q*Rq + Tq) - (p*Rp + Tp)>;
dp = DotProduct(S, r_k); /* Equation (3.1) */
If (dp >= 0) { /* Lemma 1 */
save S, p, q; /* cache the values */
return FALSE; /* no collision */
}
If (the pair of vertices (p, q) has appeared before) {
S = w; /* Lemma 8 */
}
Else
{
If (k = 2)
w=<r_1 +r_2>
If (FindHalfPlane(SetR, k, w, r_k) = FALSE)
return TRUE; /* collision, see section 4.2.1 */
save the pair of vertices (p, q);
S = § - 2xdp*r_k; /* Equation (3.2) */
}
} while (TRUE)
}
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Procedure to search a supporting vertex using local search

/*
Input : The data structure of polytope : P
An initial vertex the above polytope : p
A vector in the local coordinate system of the above polytope : S
Output : None
Return : A supporting vertex of P in the direction S
Remark : currenttime is a global variable which is incremented by one

every time this procedure is executed.

*/

Vertex SearchSupportVertex(P, p, S)
{

newp = p;

max = DotProduct(p, S);

currenttime++;

If (currenttime reach its maximum value)

{/* This case happens only when the max value of integer is attained */
currenttime = 0;

reset all timestamp of vertices to zero;

}
timestamp(p) = currenttime;
Do {
P = newp;
For (each neighborhood v vertex of p)
{
If (timestamp(v) <> currenttime)
{ /* v has not been visited before */

If (DotProduct(v, S) > max)

{
max = DotProduct(v, $);
newp = p;
}
timestamp(v) = currenttime;
}
¥
} while(p !'= newp)
return p;
}
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Procedure to determine if halfplane exists

/*
Input : Array to hold vectors : SetR
The size of the above array, must be > 2 : k
A unit vector which is the normal of halfplane for SetR
i.e. It satisfies DotProduct(w, r) >= 0 for all r in SetR : w
The new vector to be added in SetR : newR
Output : The new array with newR add to SetR : SetR
The new size of the above array : k
The new unit vector found which is the normal of halfplane for the
new array SetR : w
Return : TRUE if halfplane can be found after newR insert, FALSE otherwise.
Remarks: Define A X B = xixy2 - y1#x2, where A=(x1, yl1) and B=(x2, y2).
*/
Boolean FindHalfPlane(SetR, k, w, newR)
{
SetR[k] = newR;
k=k+ 1;
If (DotProduct(w, newR) >= 0)
return TRUE;
Compute the matrix M by Equation (4.2) where newR=(x, y, 2);

ra = drop the z-value of M*SetR[0]; /* Now ra, rb is a 2D vector */
rb = drop the z-value of M*SetR[1];
If (ra X rb < 0)
swap ra, rb; /* Make sure rb is in clockwise direction w.r.t. ra */
For (1 =2 to k - 1)
{

T = MxSetR[i]
If (ra X T > 0)

{
If (xbX T > 0)
rb =T
}
Else
{
If (xb X T < 0)
ra =T
Else
return FALSE; /% Cannot find a half plane, there is a collision */
¥
3

w = Transpose (M)*<ra + rb>; /% where <x> = x /Ix| */

return TRUE;
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II. Pseudo Code of the Improved Gilbert’s Algorithm

/*
Input : The initial vertex set of P and Q : VertexSetp[4], VertexSetq[4]

The size of the above initial vertex set, must be <= 4 : n
The transformation matrices of P and : Mp, Mg
The inverse rotation matrices of P and Q : invRp, invRq
Empty array of size 4 : lambdal[4]

Output : The affine independent vertices set for the pair of closest points

: VertexSetp[4], vertexSetql[4]

The size of the above affine independent vertices set : n
The solution of lambda for Equation (5.1) : lambdal[4]

Return : none

Remarks: The pair of closest points is given by
closest P = VertexSetp[0]l*lambda[0] + .. + VertexSetp[n-1]*lambda[n-1]
closest Q = VertexSetq[0]l*lambda[0] + .. + VertexSetq[n-1]*lambda[n-1]

*/

ImprovedGilbert (VertexSetp, VertexSetq, n, lambda, Mp, Mq, invRp, invRq);

{

For (i =0 to n-1)
V[i] = VertexSetq[i]l*Mq ~ VertexSetpl[il+*Mp
p = VertexSetp[0];
q = VertexSetql[0];
Do {

/* Find the closest point Cp for the simplex V using Johnson’s Algorithm. */

/* The solution of the affine independent set is saved in V. */

/* The size of affine independent set is saved in n which must be <= 3 */

/* The solution of lambda and closest point is saved in lambda[]l and Cp. */

/* Variable Is is the index of the resulting affine independent set V. %/
JohnsonAlgorithm( V, n, lambda, Cp, Is);
Choose the set VertexSetp and VertexSetq base on Is ;

/* Find a supporting vertex of P in the direction Cp */

p = SearchSupportVertex(P, p, invRp*Cp);

/* Find a supporting vertex of Q in the direction -Cp */

q = SearchSupportVertex(Q, q, —invRq*Cp);

If (the pair of vertices (p, q) has appear before)

return;

save the pair of vertices (p, q);

Vertexsetp[n] = p;

VertexSetq[n] = q;

n

=n + 1;

} While (TRUE)
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Procedure to find the pair of closest points

/*
Input : A polytope P with vertex set given by V : V
The size of the above polytope : n
An empty array of size 4 to store the solution : lambda
An empty position to store coordinate : Cp
An empty integer array of size 4 to store index : Is
Output : The convex hull of the set of solution in Equation (5.1):
The size of the above set : n
The solution of lambda in Equation (5.1) : lambda
The closest point from origin to P : Cp
The index of the solution set V : Is

Return : Nomne

*/
JohnsonAlgorithm( V, n, lambda, Cp, Is)
{
Choose an ordering Ps, s =1, 2, ..., t of all subsets of P;

For (s =1tot)

{
Compute V, lambda, Is by Equation (5.3)-(5.5);
If (all conditions in (5.6) are met)
{
Compute Cp by Equation (5.2);
return;
}
}

Use backup procedure to select one of s with minimum value

given by Equation (5.7);
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III. Pseudo Code of the Combined Algorithm

/*

Input : Polytopes P and Q, with origin at the center in the local coordinate system .

The rotation and inverse rotation matrices of P and Q: Rp, Rq, invRp, invhq.

The translation vector of P and Q, Tp, Tq.
Output : The closest pair of points of P and § if collide
Return : TRUE if P and Q collide, otherwise return FALSE.
*/
Boolean Combined_Collision(P, Q, Rp, Rq, invRp, invRq, Tp, Tq)
{
If (bounding boxes overlap for the first time) {

S = <Tqg - Tp>; /* where <x> is the normalized vector of x, section 3.4 */
use S to get vertices p and q from the precomputed table; /* Section 3.5 */
}
Else {
retrieve 5, p, q from cache; /* section 3.6 */
}
save current transformation matrices Rp, Rq, Tp, Tq;
k =n = 0;
prevp = prevq = NULL;
Do {
k++;
brevp = p;
prevq = q;
p = SearchSupportVertex(P, p, invRp#S); /* Section 3.3 */
q = SearchSupportVertex(Q, q, invRg*(-S));
r_k = <(q*Rq + Tq) - (p*Rp + Tp)>;
dp = DotProduct(S, r_k); /* Equation (3.1) */
If (dp >= 0) { /* Lemma 1 */
save S, p, q in cache; /* cache the values */

return non-collision;

}
If ( (p, q) = (prevp, prevq) ) /* Lemma 3 */
{
save S5, p, q in cache; /* cache the values */
return non-collision;
}
If (the pair of vertices (p, q) has appeared before)
{
If (RepeatFlag is TRUE) /% Lemma 8 #/
{

save S, p, q in cache;

return non-collision;
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S = w; /* Lemma 8 */
RepeatFlag = TRUE;
If ((r < 4) and (p, q) not in (VertexSetp, VertexSetq))

{
VertexSetp[n] = p ; /* Section 5.5 */
VertexSetq[n] = q ;
n=n+1;
}
}
Else
{
RepeatFlag = FALSE;
If (k= 2)
w=<r_1+rxr_2>;
If (FindHalfPlane(SetR, k, w, r_k) = FALSE) /+* Section 4.2.1 %/
{
If (non-collision in the previous time frame)
{
/* Find the closest points, the result is expressed as in Equation (5.1) */
If (n = 0)
{ /* Section 5.5 %/
VertexSetp[0] = p;
VertexSetq[0] = q;
VertexSetp[1] = prevp;
VertexSetq[1] = prevq;
n=2;
}

Retrieve transformation matrices from previous time frame;
/* Find the pair of closest points in previous time frame */
ImprovedGilbert (VertexSetp, VertexSetq, n, lambda,
prev_Mp, prev_Mq, prev_invRp, prev_invRq);
/* Initial values for Separating Vector Algorithm in next time frame */

S = <closest_q - closest_p> ; /% Section 5.5 %/

p = VertexSetp[0];
q = VertexSetq[0];
save S, p, q in cache;
}
return collision;

}

save the pair of vertices (p, Q);

S = S - 2%dp*r_k; /* Equation (3.2) */

1
} while (TRUE)
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